SYNTHESIS OF 4-epi-GIBBERELLIN A_{12} FROM ENT- 7α , 18-DIHYDROXY-KAUR-16-ENE

A G González B M Fraga M G Hernández and J G Luis

Instituto de Productos Naturales Orgánicos C S I C
Organic Chemistry Department University of La Laguna Tenerife SPAIN

For some time we have been working on the partial synthesis of diterpenes, using ent-kaurene type tetracyclic diterpenes from Canary species of <u>Sideritis</u> 1 as starting material. One of our objects was the synthesis of compounds with a gibbane skeleton and in this context we carried out a cyclo B reduction via benzylic acid rearrangements 2 . Now we have synthesized 4-epi-gibberellin 1 2 from epicandicandiol 3 (ent-7 α ,18-dihidroxy-kaur-16-ene)(I).

Jones' oxidation of I gave the keto-acid II which was then methylated with diazomethane yielding the methyl ester III 4 which reacted with oxygen in Kt-BuO/t-BuOH to give the ketolactone IV in good yield (85%): mp $251-253^{\circ}$, $[\alpha]_D^-25^{\circ}$, $[\lambda_{max} \ 265, \nu_{max} \ 1792, 1675, M^+ \ 312 \ (100\%)]$. When the acid II is auto-oxidated, the yield is lower (40%). Reduction of IV with sodium borohydride in MeOH afforded the alcohol V (80%): mp $199-201^{\circ}$, $[\alpha]_D^-53^{\circ}$, δ 4.38 (s). The chloro-derivative VI: mp $200-202^{\circ}$ (70%), was obtained by treating this alcohol with triphenyl phosphine in $CC1_A/Py$ (9:1).

The configurations tentatively assigned to the alcohol in IV and the Cl in VI were based on the facts that reduction of the 7-oxo-kaurene derivatives gives the more stable equatorial alcohol 4 and reaction with ${\tt Ph}_3{\tt P/CCl}_4$ takes place with inversion of configuration in most cases 5 .

When compound VI was treated with sodium methoxide in dimethoxy ethane 6 , a Favorskii rearrangement yielded 4-epi-gibberellin A_{12} dimethyl ester (VII) as a gum (74%) [NMR: δ 4.86 (2H, br s), 3.62, 3.57 (3H each, 2OMe), 3.32, 2.34 (1H each, d, J=12 Hz, H_6 and H_5), 1.32 and 1.12 (3H each, s, 2Me); MS: 360, 328, 300, 285, 270, 251].

The stereochemistry of compound VII was determined on the basis of the spin coupling between the hydrogens at \mathbf{C}_5 and \mathbf{C}_6 (J=12 Hz) identical to that reported for the GA_{12} dimethyl ester 7 and for other C-20 gibberellins.

Treatment of the dimethyl ester VII with potassium t-butoxide in DMSO afforded

the 4-epi-gibberellin A_{12} (VIII) (83%): mp 233-235°, [NMR: δ 4.85 (2H, d), 3.17, 2.36 (1H each, d, J=12 Hz), 1.40 and 1.13 (3H each, s, 2Me); MS: 314 (M⁺-18), 286, 271, 257].

To our knowledge this is the first application of the Favorskii rearrangement conditions to a chloro-enol-lactone and the first synthesis of a 4-epi-qibberellin.

REFERENCES

- 1 González A G Fraga B M Hernández M G and Luis J G: Phytochemistry $\frac{1}{2}$ 1113 (1973)
- 2 González A G Fraga B M Hernández M G Larruga F and Luis J G: An Quim 71 733 (1975)
- Rodríguez B Valverde S and Rocha J M: An Quim 66 503 (1970); Piozzi F Venturella P Bellino A Paternostro M P Rodríguez B and Valverde S: Chem Ind (Lond) 962 (1971)
- 4 This keto-methyl ester has also been obtained from candicandiol (ent-7 β ,18-dihydroxy-kaur-16-ene). See 3.
- 5 Cristol S J Strom R M and Stull D P: <u>J Org Chem</u> 43 1150 (1978) and references cited therein.
- 6 House H O and Frank G A: <u>J Org Chem</u> <u>30</u> 2949 (1965)
- 7 Cross B E and Norton K: J Chem Soc 1570 (1965)